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Abstract

One of the most powerful and useful theories use in di¤erent work to determine
the internal energy of non-uniform ‡uids is the density functional. Our goal is
determine the form of the free energy corresponding to a anisotropic and inhomo-
geneous ‡uid of spherocylinders molecules, with positions and orientations given
the complete information of posicional description. This kind of molecules are
widely used to model with great successful liquid crystals. However, we not use a
hard potential to describe the interaction between molecules. The determination
of the free energy can be done from the internal energy and the computation of
the statistical entropy through the Helmhotz relation, a = u¡Ts. For the deter-
mination of the free energy U and the statistical entropy S, the distribution and
canonical functions are expressed in terms of the lineal and angular momentum,
orientational positions and potential energy. For a homogeneous ‡uid, the free
energy reduce to the well-know result of Onsager free energy for low densities,
which is given in terms of the orientational distribution function.
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The liquid structure is determined by the repulsive part of the pair potential between

particles. For the case of liquid crystals, Onsager was the …rst to show that in a system

of elongated particles a isotropic-nematic phase transition can be observed[1]. Typical

molecules of a thermotropic and liotropic liquid crystal are represented by rigid rods

with length between 20 to 30 Å and width between 4 to 5 Å. To this work we will

consider a system made of N spherocylinders. Each spherocylinder has a coordinate in

the phase space given by[2] (r,p,!,J), where r is the position of the center of mass of

the spherocylinder, p is its linear momentum, ! is the orientation of the spherocylinder

given by the Euler angles, and J is the angular momentum. The last two variables gives

new information to the internal energy and entropy of the system.

The distribution function is denoted by PN
¡
rN ,pN ,!N,JN, t

¢
with the usual mean-

ing. The normalization condition, for this case, is

Z
P (N) ¡rN ,pN ,JN ,!N , t

¢
drNdpNd!NdJN =

Z
P (N) ¡¡N , t

¢
d¡N (1)

= 1

A system made of elongated rigid molecules (ellipsoids or spherocylinders) presents

several phases[3, 4, 5], this can be show determining the free energy of the system using

the density functional theory[4, 5]. For the determination of the free energy f per

particle we start from the thermodynamic relation

a = u ¡ T s, (2)

where u is the internal energy per particle, T is the temperature, and s is the entropy per

particle. This is a di¤erent approach by those used by Onsager[1] and others[3, 4, 5, 6]

to study phase transitions in the kind of systems considered in this work. We use the
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Gibbs postulate to de…ne the entropy per molecule respect to its equilibrium value,

which is determined for the following expression[7]

s = ¡k
Z

P (N )
¡
¡N , t

¢
ln

Ã
P (N)

¡
¡N , t

¢

P (N)
eq (¡N)

!
d¡(N) + seq

where k is the Boltzmann’s constant, P (N)
eq

¡
¡N

¢
= P (N)

¡
rN , pN , ωN , JN

¢
is equilibrium

distribution function of the system, and seq is the equilibrium entropy, where the extra

variables ! and J are considered,

seq = ¡k
Z

P (N)
eq

¡
¡(N), t

¢
lnP (N)

eq
¡
¡(N), t

¢
d¡N . (3)

Now we assume that P (N)
eq

¡
¡(N), t

¢
satisfy the mesoscopic continuity equation, when

the Hamiltonian of the system is given by

HN =
NX

i=1

P 2
i

2m
+

NX

i=1

X

l=x,y,z

J2
il

2Il
+

1
2

X

i6=j

V (ri, rj,!i,!j) (4)

In the same way that in equilibrium[8, 9, 10], we assume that we can factor the non-

equilibrium distribution function P (N)
eq

¡
¡(N), t

¢
in terms of the dynamic correlation

function g(N)
¡
rN ,!N , t

¢
as

P (N) = P (N) ¡rN ,pN ,!N,JN, t
¢

= P (1)(1)P (1)(2) . . . P (1)(N)g(N) ¡rN ,!N, t
¢
. (5)

Here, the reduced distribution function is represented by P (s) = P (s)
1,2..,s. When s = 1,

we use the short notation P (1) (i). Beside, we also assume that the dynamic correlation
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function g(N)
¡
rN ,!N , t

¢
can be factor in several correlation functions as

g(N) ¡rN , ωN , t
¢

= g(2) (1, 2) . . . g(2) (N ¡ 1, N)

£δg (3) (1, 2, 3) . . . δg(3) (N ¡ 2, N ¡ 1, N) . . . ,

where g (3) (1, 2, 3) = δg(3) is de…ned through the relation

g(3) (1, 2, 3) = g (2) (1, 2) g(2) (1, 3) g(2) (2, 3) δg(3) (1, 2, 3) .

In the factors of g(N ) we have N (N ¡ 1) /2 pairs, N (N ¡ 1)(N ¡ 2) /3! triplets, etc.,

and applying the logaritm to expression (5), we have

lnP (N ) =
NX

i=1

ln P (1)(i) + ln g(N) ¡rN ,!N , t
¢

= N ln P (1)(i) +
N
2
(N ¡ 1) ln g(2)

¡
r2, ω2, t

¢

+
N
3!

(N ¡ 1) (N ¡ 2) ln δg(3) + . . . (6)

For local equilibrium we have the same result but with the distribution functions

evaluated in equilibrium,

ln P (N)
eq = N lnP (1)

eq (i) + N
2
(N ¡ 1) ln g(2)

¡
r2, ω2, t

¢
+ . . . . (7)

Using expressions (6) and (7) in the Gibbs postulate, eq. (3), we obtain

s = ¡kN
Z

P (1) ln
P (1)(1)
P (1)

eq (1)
drdpd!dJ

¡N (N ¡ 1)
2

k
Z

P (2) ln

Ã
g(2)

g(2)eq

!
dr1dr2dp1dp2d!1d!2dJ1dJ2 + seq + . . .
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being seq

seq = ¡kN
Z

P (1)
eq ln P (1)

eq drdpd!dJ

¡N(N ¡ 1)
2

k
Z

P (2)
eq ln g(2)eq dr1dr2dp1dp2d!1d!2dJ1dJ2 + . . . (8)

In particular, when the system is in thermodynamic equilibrium, and according to

[6],we only take into account the pair correlation function g(2)eq , and the one, P (1)
eq , and

two particles, P (2)
eq , distribution function. From the Hamiltonian (4), we can factor the

one particle distribution function as[2]

P (1)
eq (1) = P (1)

eq (r1,p1,!1,J1)

= P (p1)P (J1)P (r1,!1). (9)

Here, P (p1)P (J1) and P (r1,!1) are the linear momentum, angular momentum, and

position-orientation distribution function respectively, and the appropriate normalized.

In equilibrium g(2)eq (r2,!2) correspond to the pair correlation function, and when pair

potentials are considered, it depends of the centers of mass distance and the orientations,

g(2)eq
¡
r2, ω2¢ = g(2)eq (r12,!1,!2) . (10)

Also, in equilibrium, P (2)
eq the distribution function can be writing as

P (2)
eq = P (1)

eq (1)P (1)
eq (2)g(2)eq (r12,!1,!2) .

If expressions (9) and (10) are used, and the appropriate normalizations too, the

integrations over momentums, linear and angular, gives the following relation for the
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equilibrium entropy

seq = ¡k
Z

P (r1,!1) fln [¸P (r1,!1)] ¡ 1g dr1d!1

¡k
Z

P (r1,!1)P (r2,!2)g(2)eq (r12,!1,!2)

£ ln g(2)eq (r12,!1,!2) dr1dr2d!1d!2 (11)

where ¸ is the de Broglie’s wavelength, where the inertia moments are considered.

Expression (11) can be considered as the entropy for an anisotropic and inhomogenous

‡uid consisting of non-spherical molecules.

According to the free energy relation (2), the internal energy has to be determined.

For this we will use the canonical ensemble, where the expression for the internal energy

is[2]

u = ¡1
2

Z Z
V (r12,!1,!2)P (2)

eq dr1dr2d!1d!2.

Thus, the free energy of the system is given by

A = kT
Z

P (r1, ω1) fln [¸P (r1, ω1)] ¡ 1gdr1dω1

+kT
Z

P (2)
eq (r, ω) ln g(2)eq dr1dr2dω1dω2

¡1
2

Z Z
V (rij, ω1, ω2)P (2)

eq dr1dω1dr2dω2.

Because of the internal degrees of freedom, the all the terms of the above expression

includes additional contributions, respect to the spherical case, but the meaning of each

one is similar to the spherical case.

For the case of a homogenous ‡uid, the one and two particles distribution functions

do not depend of the position and can be written as P (r, ω) = ½P (ω), where ½ is the
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numerical density. For this, the free energy is

A
NkT

=
A(r,ω)

N
+ ln (½¸) ¡ 1 +

Z
P (!1) lnP (!1) d!1

¡½
2

Z Z
V (r12,!1,!2)P (!1)P (!2) d!1d!2.

The above expression is known as free energy Onsager’s approximation, without the …rst

term A(r,ω)/N . In a homogenous ‡uid, P (r1, ω1) is constant, and its value is N/V $ (

$ = 4¼ for linear molecules, $ = 8¼2 for nonlinear molecules), and A(r,ω)/N is given

by
A(r,ω)

N = ¡ kT ½2

N$2

Z
g(2)eq (r12,!1,!2) ln g(2)eq (r12,!1,!2) dr1dr2d!1d!2 (12)

To evaluate the last expression we assume that the pair correlation function can be

split into a positional and a orientational parts[11],

g (2)
eq (r12, ω1, ω2) = gr(r)g

¡
r/ω2¢ . (13)

The …rst factor in the above expression represents the radial distribution function for

an arbitrary site in the molecule, i.e.,

gr(r) =
1

$2

Z
g(2)eq (r12,!1,!2)d!1d!2

The second one is the distribution function of the relative orientations of two molecules

at a distant r, and is known as orientational distribution function, and its normalized

as
1

$2

Z
g

¡
r/ω2

¢
d!1d!2 = 1.
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Using (13) into (12), and using the above normalization, the free energy A(r,ω) becomes

A(r,ω) = ¡k½2
Z

gr(r) ln gr(r)dr ¡ k½2

$2

Z
gr(r)Sor(r)dr

where

Sor(r) =
Z

g
¡
r/ω2

¢
ln g

¡
r/ω2

¢
d!1d!2
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